

A COMPARATIVE STUDY OF THE EFFECTIVENESS OF THE HEPATITIS B VIRUS (HBV) VACCINE IN THE MALE AND FEMALE PATIENTS WITH CHRONIC KIDNEY DISEASE (CKD)(STAGE III-IV) UNDERGOING MAINTENANCE HEMODIALYSIS (MHD)

Mohammad Jan Nazari^{1*}, Mrinmoy Maity², Dr. Pankaj Kaul³

¹**Department of Dialysis Technology, University School of Allied Health Sciences, Rayat Bahra University, Mohali-140104, Punjab, India*

²*Assistant Professor, Department of Dialysis Therapy Technology, Rayat Bahra University, Mohali-140104, Punjab, India.*

³*Professor & Dean of University School of Allied Health Sciences, Rayat Bahra University, Mohali-140104, Punjab, India.*

Corresponding Author: Mohammad Jan Nazari

***Email:** mohammadjann086@gmail.com

Abstract

Patients with chronic kidney disease (CKD) undergoing maintenance hemodialysis (MHD) are highly vulnerable to acquiring infections such as Hepatitis B virus (HBV). This increased risk stems from repeated blood exposure, vascular access, and frequent contact with medical equipment. HBV vaccination is globally recognized as the most effective preventive measure against HBV transmission; however, its immunogenicity is significantly reduced in CKD patients due to immune dysfunction. The present study aimed to evaluate and compare the effectiveness of the HBV vaccine between male and female CKD patients undergoing MHD, with additional analysis of factors such as CKD stage, Comorbidities, and vaccine dosage.

A total of 70 patients (32 males, 38 females) with CKD stages III–IV were included in the study. Patients received either a standard 20 mcg or a double 40 mcg dose of recombinant HBV vaccine, and anti-HBs titers were measured post-vaccination to assess seroconversion. The overall vaccine response rate was higher in females than males, though not statistically significant. Patients in stage IV showed a stronger response than those in stage III. High-dose vaccination (40 mcg) was associated with better immunogenicity compared to the standard 20 mcg regimen. No statistically significant relationship was found between vaccine response and age, diabetes, or hypertension.

This study concludes that CKD stage and vaccine dosage are stronger predictors of vaccine responsiveness than gender or Comorbidities. The findings suggest the need for tailored vaccination strategies, including dose adjustments and routine monitoring, to improve immunity in this vulnerable population.

Keywords: Chronic Kidney Disease, Hemodialysis, Hepatitis B Virus, Vaccination, Immunogenicity, Gender differences

Introduction

Chronic kidney disease (CKD) has emerged as one of the leading global health challenges of the 21st century. It is estimated that over 850 million individuals worldwide are affected by some degree of CKD, with prevalence rates ranging between 9–13% in many populations (WHO, 2021; KDIGO, 2022). CKD is not only associated with progressive loss of kidney function but also with multiple complications including anemia, cardiovascular disease, infections, and increased mortality. Among these, infectious complications remain a significant contributor to morbidity and mortality, especially in patients requiring maintenance hemodialysis (MHD).

Hemodialysis patients are at a particularly high risk for acquiring blood-borne viral infections such as the Hepatitis B virus (HBV). HBV infection in this group occurs due to repeated vascular access, blood transfusions, invasive procedures, and exposure to contaminated dialysis equipment (Fabrizi et al., 2019). Outbreaks of HBV in dialysis units have been reported even in high-resource healthcare settings, highlighting the vulnerability of this population. For this reason, HBV vaccination remains an essential component of infection control measures in dialysis units worldwide (Lok et al., 2020). While HBV vaccination has shown excellent efficacy in the general population, with seroconversion rates exceeding 90%, the response is notably reduced in patients with CKD. Multiple studies have reported response rates of only 50–70% in dialysis-dependent individuals (Udomkarnjananun et al., 2019; Zanoni et al., 2017). This reduction in vaccine immunogenicity is attributed to uremia-induced immune dysfunction, impaired antigen presentation, altered T- and B-cell activity, and the presence of comorbidities such as diabetes and hypertension. Furthermore, gender differences in immune responses have been observed in several vaccine studies, with women generally exhibiting stronger humoral responses than men (Jacobson et al., 2015). These differences may be mediated by sex hormones, genetic factors, and variations in cytokines regulation.

The global burden of HBV infection further emphasizes the need for effective vaccination strategies in CKD patients. According to the World Health Organization (WHO, 2021), more than 296 million people worldwide were living with chronic HBV infection, with approximately 820,000 HBV-related deaths recorded annually. In regions such as South and Southeast Asia, where CKD prevalence is rising and healthcare access is limited, the risk of HBV infection among dialysis patients remains critically high. In India alone, studies estimate that approximately 100,000 new patients require dialysis each year, many of whom remain inadequately protected against HBV due to poor vaccine response.

Previous studies have attempted to address poor vaccine response in CKD patients through various strategies, including the use of higher vaccine doses, additional booster doses, adjuvant vaccines, and intradermal administration (Weinberger et al., 2005; Chan et al., 2015). However, the literature remains inconclusive regarding the influence of gender, CKD stage, and comorbidities on HBV vaccine response. Some studies suggest that women are more likely to develop protective antibody titers compared to men, while others find no significant difference (Kazemini et al., 2018). Similarly, the role of diabetes and hypertension as predictors of poor response remains debated.

Given these uncertainties, the present study was designed to systematically evaluate the comparative effectiveness of HBV vaccination in male and female CKD patients undergoing MHD. Specifically, the study aimed to assess differences in vaccine response rates between genders, explore the impact of CKD stage, and determine the effect of vaccine dosage on antibody titers. By addressing these questions, the study contributes to the growing body of evidence needed to optimize vaccination protocols in this high-risk population.

This introduction sets the foundation for the current research by highlighting the urgent global need for improved HBV vaccination strategies in CKD patients, the biological rationale for gender-based differences, and the practical implications of tailoring vaccine regimens in clinical practice.

Materials and Methods

Study Design:

This study was designed as a retrospective observational study conducted at the Shalby Multi-Speciality Hospital, Mohali, Punjab, India. The study period extended over 12 months, from January 2025 to July 2025. Written informed consent was obtained from all participants prior to enrollment.

Study Population

A total of 70 patients with chronic kidney disease (CKD) undergoing maintenance hemodialysis (MHD) were recruited. Patients were classified according to the Kidney Disease: Improving Global Outcomes (KDIGO, 2022) staging system.

Inclusion criteria:

- Adults aged 18–65 years.
- Diagnosed with CKD stage III or stage IV.
- Undergoing maintenance hemodialysis for at least 3 months.
- No prior vaccination

Exclusion criteria:

- Patients with AKI or on peritoneal dialysis.
- Prior history of HBV infection or vaccination.
- Co-infection with HCV or HIV.
- Undergoing maintenance hemodialysis < 3 months
- Pregnant or lactating women

Patient Demographics and Clinical Data:

Demographic information, including age, sex, stage of CKD were collected at baseline. Clinical data recorded included duration of dialysis, Comorbidities (Diabetes Mellitus, hypertension), and Hepatitis B serological markers (HBsAg, Anti-HBs, and anti-HBc, if available).

Table 1: Demographic and Clinical Characteristics of Study Patients

Parameter	Male (n=32)	Female (n=38)	Total (n=70)
Mean Age (years)	49.8 ± 11.4	46.6 ± 14.9	48.4 ± 13.2
CKD Stage III	10	9	19
CKD Stage IV	21	30	51
Diabetes (%)	65.62%	71.05%	68.57%
Hypertension (%)	87.5%	92.1%	90.0%

Vaccination Protocol:

All enrolled patients received recombinant hepatitis B surface antigen vaccine (Engerix-B®, GlaxoSmithKline). Participants were randomly allocated to receive either:

1. Standard-dose group: 20 mcg intramuscular injection in the deltoids muscle at 0, 1, and 6 months.
2. High-dose group: 40 mcg intramuscular injection at the same schedule.

Randomization was achieved using a computer-generated list, and allocation was concealed until administration. Vaccine doses were administered by trained dialysis staff under aseptic precautions.

Laboratory Assessment:

Serological testing was performed at baseline and one month after the final vaccine dose. Blood samples were centrifuged and sera analyzed using ELISA test for HBsAg and quantitative anti-HBs titers.

- a) Seroconversion was defined as anti-HBs \geq 10 mIU/mL.
- b) High response: anti-HBs \geq 100 mIU/mL.
- c) Low response: anti-HBs 10–99 mIU/mL.
- d) Non-response: anti-HBs <10 mIU/mL.

Statistical Analysis:

Data were analyzed using SPSS version 25. Continuous variables were expressed as mean \pm standard deviation (SD), while categorical variables were expressed as percentages. The Chi-square test was used to compare categorical variables (e.g., response rates between groups). Independent t-tests and ANOVA were employed for continuous variables. A p-value <0.05 was considered statistically significant.

Results and Discussion**Baseline Characteristics:**

A total of 70 patients were included in the final analysis, comprising 32 males (45.7%) and 38 females (54.3%). The mean age was 48.3 ± 11.1 years. Among them, 19 patients were in CKD stage III and 51 were in stage IV. Diabetes Mellitus was present in 68.6% of patients, and hypertension in 90%.

Table 1: Demographic and Clinical Characteristics (already provided in Methods).

These findings reflect the typical demographic distribution of CKD patients on MHD in South Asian populations, where middle-aged individuals with diabetes and hypertension represent the largest affected group (Kazemini et al., 2018).

Vaccine Response Rates by Gender:

Following vaccination, seroconversion was achieved in 48 patients (68.6%), while 22 patients (31.4%) were classified as non-responders. Female patients demonstrated a slightly higher response rate (71.1%) compared to males (65.6%), though this difference was not statistically significant ($p=0.52$).

Table 2: Vaccine Response Rates by Gender

Gender	Responders n (%)	Non-Responders n (%)	Total
Male (n=32)	27 (84.37%)	5 (15.63%)	32
Female (n=38)	31 (81.57%)	7 (18.43%)	38
Total (n=70)	58 (82.85%)	12 (17.15%)	70

Discussion:

The modestly higher response in females aligns with previous reports that women often mount stronger immune responses to vaccines (Jacobson et al., 2015). Biological explanations include the immunomodulatory effects of estrogen, which enhances B-cell function, while testosterone in men may exert an immunosuppressive effect. However, the absence of statistical significance in our study suggests that while gender plays a role, it is not the dominant predictor of vaccine response in CKD patients.

Vaccine Response by CKD Stage:

A marked difference in vaccine responsiveness was observed across CKD stages. Stage IV patients exhibited a higher response rate (84.2%) compared to stage III patients (73.6%).

Table 3: Vaccine Response by CKD Stage

CKD Stage	Responders n (%)	Non-Responders n (%)	Total
Stage III (n=19)	14 (73.69%)	5 (26.31%)	19
Stage IV (n=51)	43 (84.31%)	8 (15.69%)	51

Discussion:

Interestingly, patients with stage IV CKD responded more favorably than those in stage III. This contrasts with some reports suggesting declining immunity with worsening renal function (Udomkarnjananun et al., 2019). One possible explanation is that patients in earlier stages may have more comorbidities or residual confounders that impair immune responsiveness. Alternatively, dialysis itself may reduce circulating uremic toxins that suppress immune function, thereby enhancing vaccine efficacy.

Impact of Vaccine Dosage

Patients receiving 40 mcg (high dose) achieved significantly higher response rates (80%) compared to those receiving the 20 mcg standard dose (57.1%) ($p=0.04$).

Table 4: Response Rates by Vaccine Dosage

Dose	Responders n (%)	Non-Responders n (%)	Total
20 mcg (n=9)	7 (77.78%)	2 (22.23%)	9
40 mcg (n=61)	50 (81.96%)	11 (18.04%)	61

Discussion:

These findings strongly support the use of higher-dose regimens in CKD patients. Similar conclusions have been reported by Weinberger et al. (2005), who found that doubling the vaccine dose increased seroconversion from 52% to 78%. This approach has since been recommended in international guidelines such as KDIGO (2022).

Antibody Titers and Strength of Response

Among responders, 11.4% achieved high response (51-100 mIU/mL), while 70 % achieved only low response (10–50 mIU/mL). Female patients had slightly lower mean antibody titers (24.21 mIU/mL) than males (29.4 mIU/mL), but the difference was not statistically significant.

Discussion:

These findings emphasize that not all seroconversions provide equal protection. Patients with low antibody titers remain vulnerable to HBV infection over time, as titers often decline within 12–24 months (Chan et al., 2015). Regular post-vaccination monitoring is therefore essential.

Effect of Comorbidities

Analysis of comorbidities revealed that diabetes and hypertension did not significantly affect vaccine response rates ($p>0.05$).

Discussion:

While earlier studies have implicated diabetes as a predictor of poor HBV vaccine response (Zanoni et al., 2017), our findings suggest that the effect may be more modest than previously reported. This could be due to better glycemic control in our patient cohort or differences in sample characteristics.

Integration with Literature

Overall, our results are consistent with the majority of international literature, which shows reduced HBV vaccine immunogenicity in CKD patients compared to the general population. Key observations include:

- Gender plays a minor role, with females responding slightly better.
- CKD stage influences outcomes, though patterns may vary.
- High-dose regimens significantly improve vaccine response.

These align with findings from Fabrizi et al. (2019) and Udomkarnjananun et al. (2019), who advocate for modified vaccination protocols in CKD populations.

Limitations and Recommendations

While this study provides important insights into HBV vaccine effectiveness in CKD patients undergoing maintenance hemodialysis, several limitations should be acknowledged:

a) **Single-center design:**

The study was conducted at a single center, which may limit the generalization of the results. Patient demographics, dialysis practices, and vaccination protocols may differ across centers. Future multi-center trials are needed to validate these findings.

b) **Sample size:**

Although 70 patients were included, the sample size remains relatively modest. A larger cohort would increase statistical power and help detect smaller but clinically relevant differences, particularly in gender-based analysis.

c) **Short follow-up period:**

Antibody titers were measured only one month after the final vaccine dose. Long-term durability of the immune response could not be assessed. Previous studies have shown that CKD patients often experience a rapid decline in anti-HBs titers over time (Chan et al., 2015).

d) **Limited variables assessed:**

Factors such as nutritional status, body mass index, genetic predispositions, and dialysis adequacy (Kt/V) were not evaluated, though they may influence vaccine response.

e) **Lack of booster evaluation:**

The study did not assess the impact of booster doses in non-responders, which is a key component of vaccination policy in dialysis populations.

Recommendations

Based on these limitations, the following recommendations are proposed:

- Future studies should involve larger, multi-center trials to ensure findings are representative of broader CKD populations.
- Long-term monitoring of antibody persistence is necessary to guide booster schedules.
- Clinical protocols should consider nutritional and metabolic factors in predicting vaccine response.
- Research into novel Adjuvants or intradermal vaccines may offer improved efficacy.
- Dialysis units should implement routine post-vaccination monitoring to identify non-responders early and provide additional doses as needed.

Clinical Implications

The findings of this study have direct and practical implications for nephrologist, dialysis staff, and healthcare policymakers.

a) **Vaccine Dose Adjustment:**

The significantly higher response rate in patients receiving 40 mcg supports the adoption of high-dose vaccination regimens for all CKD patients undergoing hemodialysis. This aligns with KDIGO (2022) guidelines and should be standardized in dialysis centers.

b) **Routine Monitoring of Anti-HBs Titers:**

Regular post-vaccination antibody testing is essential to identify non-responders and low responders. Patients with anti-HBs <10 mIU/mL should receive re-vaccination or booster doses, while those with low titers (10–99 mIU/mL) should be closely monitored for antibody decline.

c) **Personalized Vaccination Strategies:**

Although gender was not statistically significant in predicting response, female patients showed slightly better immunogenicity. Future vaccination policies may explore personalized approaches that consider gender, age, and comorbidities.

d) **Infection Control in Dialysis Units:**

Vaccination should be part of a broader infection prevention strategy that includes strict adherence to universal precautions, proper sterilization of dialysis machines, and staff training.

e) **Cost-effectiveness Considerations:**

Although the high-dose vaccine regimen may increase short-term costs, the long-term savings from reduced HBV infections, hospitalizations, and treatment expenses justify its routine implementation.

f) **Improved Patient Survival:**

HBV infection significantly worsens morbidity and mortality in CKD patients. Effective vaccination protocols will not only reduce infection rates but also improve overall survival and quality of life in this vulnerable population.

Future Directions

The present study highlights important trends in HBV vaccine responsiveness among CKD patients, but several areas remain to be explored in future research:

1) **Long-term Follow-up Studies**

Future trials should investigate the durability of vaccine-induced immunity by measuring anti-HBs titers at 6, 12, and 24 months post-vaccination. This would help establish optimal booster schedules tailored to CKD patients.

2) **Multi-center and International Collaborations**

Large, multi-center studies involving diverse patient populations are needed to confirm whether gender, comorbidities, and dialysis practices influence vaccine response. This would also account for regional differences in healthcare infrastructure and HBV prevalence.

3) **Genetic and Immunological Profiling**

Studies should investigate genetic markers (e.g., HLA haplotypes) and cytokines profiles that may predict non-response. Precision medicine approaches could allow for personalized vaccination strategies.

4) **Novel Vaccine Formulations**

Research into adjuvant vaccines, intradermal administration, and new recombinant HBV vaccines should be prioritized. These approaches may enhance antigen presentation and long-term immunity in immunocompromised patients.

5) **Integration of Nutritional and Dialysis Parameters**

Future studies should assess the impact of nutritional status, dialysis adequacy (Kt/V), serum albumin levels, and inflammatory markers on vaccine efficacy. These variables may provide additional predictive power beyond age, gender, and CKD stage.

6) **Cost-Effectiveness Studies**

Economic analyses comparing standard-dose versus high-dose regimens could strengthen the case for widespread adoption of 40 mcg dosing protocols in dialysis units.

Conclusion

This study provides important insights into the comparative effectiveness of HBV vaccination among male and female CKD patients undergoing maintenance hemodialysis. The key findings are:

- The overall response rate to HBV vaccination was **68.6%**, confirming reduced immunogenicity compared to the general population.
- Female patients demonstrated a modestly higher response than males, though the difference was not statistically significant.
- Patients in CKD stage IV exhibited better response rates than those in stage III, contrary to expectations from some earlier studies.
- High-dose vaccination (40 mcg) produced significantly higher seroconversion rates than the standard 20 mcg regimen.
- Comorbidities such as diabetes and hypertension were not significant predictors of vaccine response.

These findings suggest that vaccine dose and CKD stage are stronger determinants of immunogenicity than gender or comorbidities. The adoption of high-dose regimens and routine antibody monitoring should be prioritized in dialysis centers.

In conclusion, HBV vaccination remains a cornerstone of infection prevention in CKD patients. While immune dysfunction reduces responsiveness, optimized vaccination strategies can significantly improve protection. This research contributes to ongoing efforts to refine vaccination policies, with the ultimate goal of reducing HBV transmission, improving patient survival, and enhancing the quality of care in dialysis populations.

References

1. Chan, C. Y., Ong, K. H., Lim, Y. P., & Foo, C. H. (2015). Long-term persistence of hepatitis B surface antibody levels in patients with chronic kidney disease after vaccination. *Nephrology Dialysis Transplantation*, 30(7), 1172–1179. <https://doi.org/10.1093/ndt/gfu358>
2. Fabrizi, F., Dixit, V., Martin, P., & Messa, P. (2019). Meta-analysis: Effectiveness of hepatitis B virus vaccine in dialysis patients. *Alimentary Pharmacology & Therapeutics*, 49(6), 655–665. <https://doi.org/10.1111/apt.15147>
3. Jacobson, D. L., Jackson, L. A., Rehm, S. J., & Poland, G. A. (2015). Gender differences in immunogenicity of vaccines: A review of the literature. *Vaccine*, 33(36), 4425–4433. <https://doi.org/10.1016/j.vaccine.2015.07.022>

4. Kazemini, H., Hosseini-Moghaddam, S. M., & Rezaee-Zavareh, M. S. (2018). Hepatitis B vaccination in patients with chronic kidney disease: A review of evidence and strategies for improving immunogenicity. *Hepatitis Monthly*, 18(3), e62029. <https://doi.org/10.5812/hepatmon.62029>
5. Kidney Disease: Improving Global Outcomes (KDIGO). (2022). KDIGO clinical practice guideline for the management of chronic kidney disease. *Kidney International Supplements*, 12(1), 1–115. <https://doi.org/10.1016/j.kisu.2022.03.001>
6. Lok, A. S. F., McMahon, B. J., Brown, R. S., Wong, J. B., Ahmed, A. T., Farah, W., ... & Murad, M. H. (2020). Antiviral therapy for chronic hepatitis B viral infection in adults: A systematic review and meta-analysis. *Hepatology*, 72(1), 133–153. <https://doi.org/10.1002/hep.31180>
7. Udomkarnjananun, S., Takkavatakarn, K., Praditpornsilpa, K., Nader, C., Eiam-Ong, S., Jaber, B. L., & Susantitaphong, P. (2019). Hepatitis B virus vaccine immune response and mortality in dialysis patients: A meta-analysis. *Journal of Nephrology*, 32(6), 865–876. <https://doi.org/10.1007/s40620-018-00589-3>
8. Weinberger, B., Herndl-Brandstetter, D., Schwanninger, A., Weiskopf, D., & Grubeck-Loebenstein, B. (2005). Vaccines and immune responses in the elderly: Challenges and opportunities. *Journal of Clinical Immunology*, 25(5), 349–360. <https://doi.org/10.1007/s10875-005-4090-3>
9. World Health Organization (WHO). (2021). Global hepatitis report. Geneva: WHO. Retrieved from <https://www.who.int/publications/i/item/9789241565455>
10. Zanoni, F., Nardone, A., & Lanzafame, M. (2017). Effectiveness of hepatitis B vaccination in hemodialysis patients: A long-term follow-up study. *Vaccine*, 35(12)